A Necessary and Sufficient Condition for Existence of a Positive Perron Vector

نویسندگان

  • Sheng-Long Hu
  • Liqun Qi
چکیده

In 1907, Oskar Perron showed that a positive square matrix has a unique largest positive eigenvalue with a positive eigenvector. This result was extended to irreducible nonnegative matrices by Geog Frobenius in 1912, and to irreducible nonnegative tensors and weakly irreducible nonnegative tensors recently. This result is a fundamental result in matrix theory and has found wide applications in probability theory, internet search engines, spectral graph and hypergraph theory, etc. In this paper, we give a necessary and sufficient condition for the existence of such a positive eigenvector, i.e., a positive Perron vector, for a nonnegative tensor. We show that every nonnegative tensor has a canonical nonnegative partition form, from which we introduce strongly nonnegative tensors. A tensor is called strongly nonnegative, if the spectral radius of each genuine weakly irreducible block is equal to the spectral radius of the tensor, which is strictly larger than the spectral radius of any other block. We prove that a nonnegative tensor has a positive Perron vector if and only if it is strongly nonnegative. Numerical results for finding a positive Perron vector are reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Continuous Frames for Operators

In this note, the notion of generalized continuous K- frame in a Hilbert space is defined. Examples have been given to exhibit the existence of generalized continuous $K$-frames. A necessary and sufficient condition for the existence of a generalized continuous $K$-frame in terms of its frame operator is obtained and a characterization of a generalized continuous $K$-frame for $ mathcal{H} $ wi...

متن کامل

Existstence and uniqueness of positive solution for a class of boundary value problem including fractional differential equation

In this paper we investigate a kind of boundary value problem involving a fractional differential equation.  We study the existence of positive solutions of the problem that fractional derivative is the Reimann-Liouville fractional derivative. At first the green function is computed then it is proved that the green function is positive. We present necessary and sufficient conditions for existen...

متن کامل

Optimally Local Dense Conditions for the Existence of Solutions for Vector Equilibrium Problems

In this paper, by using C-sequentially sign property for bifunctions, we provide sufficient conditions that ensure the existence of solutions of some vector equilibrium problems in Hausdorff topological vector spaces which ordered by a cone. The conditions which we consider are not imposed on the whole domain of the operators involved, but just on a locally segment-dense subset of the domain.

متن کامل

On the Characterization of Expansion Maps for Self-Affine Tilings

We consider self-affine tilings in R with expansion matrix φ and address the question which matrices φ can arise this way. In one dimension, λ is an expansion factor of a self-affine tiling if and only if |λ| is a Perron number, by a result of Lind. In two dimensions, when φ is a similarity, we can speak of a complex expansion factor, and there is an analogous necessary condition, due to Thurst...

متن کامل

Perron-frobenius Theory for Positive Maps on Trace Ideals

This article provides sufficient conditions for positive maps on the Schatten classes Jp; 1 p < 1 of bounded operators on a separable Hilbert space such that a corresponding Perron-Frobenius theorem holds. With applications in quantum information theory in mind sufficient conditions are given for a trace preserving, positive map on J1, the space of trace class operators, to have a unique, stric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2016